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Motivation : parametric PDE’s

We are interested in PDE’s of the general form

D(u, y) = 0,

where D is a partial differential operator, u is the unknown and y = (yj )j=1,...,d is a
parameter vector of dimension d >> 1 or d =∞.

For simplicity (up to a change of variable), we assume that all yj range in [−1, 1], and
therefore

y ∈ U = [−1, 1]d or [−1, 1]N.

We also assume well-posedness of the solution in some Banach space V for every
y ∈ U,

y 7→ u(y)

is the solution map from U to V .

Solution manifold M := {u(y) : y ∈ U} ⊂ V .

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and propagation, risk assessment).

These applications often requires many queries of u(y), and therefore in principle
running many times a numerical solver.

Objective : economical numerical approximation of the map y 7→ u(y).
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Curse of dimensionality

Standard methods (polynomials of fixed degree, meshes) are too costly for d >> 1.

Uniform approximation of Cm functions of d variable is at best O(N−m/d ) accurate
where N is the number of degrees of freedom.

Exponential growth with d of the complexity for a prescribed accuracy also occurs for
infinitely smooth functions (Novak-Wozniakowski).

A possible way out : exploit anisotropic features in the function y 7→ u(y).

A typical situation : the PDE is parametrized by a function a (diffusion coefficient,
velocity, domain boundary) and yj are the coordinates of a in a certain basis
representation a = a +

∑
j≥1 yjψj .

If the ψj decays as j → +∞ (for instance if a has some smoothness) then the variable
yj is less active for large j .

We showed that in certain relevant instances, this mechanism allows to break the
curse of dimensionality by using suitable expansions : we obtain approximation rates
O(N−s ) that are independent of d in the sense that they hold when d =∞.
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Sparse tensorized expansion y 7→ u(y)

Approximation of u(y) by truncated expansions of the form

uN (y) =
∑
ν∈ΛN

uνφν(y), .

with φν : U → R and uν ∈ V , and #(ΛN ) = N.

We are interested in establishing bounds of the form

‖u − uN‖Lq(U,V ) ≤ CN−s ,

e.g. for q = 2 (for some probability measure) or q =∞.

The case q =∞ allows us to control the Kolmogorov width of the solution manifold :
with EN := span{uν : ν ∈ ΛN }, one has

dN (M) = inf
dim(E)=N

sup
v∈M

dist(v ,E )V ≤ sup
y∈U

dist(u(y),EN )V ≤ ‖u − uN‖L∞(U,V ),

This is of interest in the analysis of reduced basis methods.

The case q = 2 is of interest in the analysis of POD (principal component) methods.
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Linear-affine model

Consider the steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

where f = f (x) ∈ L2(D) and the diffusion coefficients are given by

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x),

where (ψj ) is a given family of functions. Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U.

or equivalently ā ∈ L∞(D) and
∑

j |ψj (x)| ≤ ā(x) − r , x ∈ D.

Then the solution map is bounded from U to V := H1
0 (Ω) :

‖u(y)‖V ≤ Cr :=
‖f ‖V∗

r
, y ∈ U, where ‖v‖V := ‖∇v‖L2 .

More generally, we could consider linear equations of the form

A(y)u = f ,

where A(y) := A +
∑

yjAj is boundedly invertible in suitable spaces uniformly in y .
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Sparse Taylor approximations

We consider the expansion of u(y) =
∑
ν∈F tνyν, where

yν :=
∏
j≥1

y
νj
j and tν :=

1

ν!
∂νu|y=0 ∈ V with ν! :=

∏
j≥1

νj ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
νj 6= 0). The sequence (tν)ν∈F is indexed by countably many integers.

ν

1

ν3

2

ν

Objective : identify a set ΛN ⊂ F with #(ΛN ) = N such that u is well approximated
by the partial expansion

uN (y) :=
∑
ν∈ΛN

tνy
ν.
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Best N-term approximation

For all y ∈ U = [−1, 1]N we have

‖u(y) − uN (y)‖V ≤ ‖
∑
ν/∈ΛN

tνy
ν‖V ≤

∑
ν/∈ΛN

‖tν‖V

Best N-term approximation in the `1(F) norm : use for ΛN the N largest ‖tν‖V .

Observation (Stechkin) : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this ΛN ,∑
ν/∈ΛN

‖tν‖V ≤ CN−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖p .

Proof : with (tn)n>0 the decreasing rearrangement, we combine

∑
ν/∈ΛN

‖tν‖V =
∑
n>N

tn =
∑
n>N

t1−p
n tpn ≤ t1−p

N Cp and NtpN ≤
N∑

n=1

tpn ≤ Cp .

Question : do we have (‖tν‖V )ν∈F ∈ `p(F) for some p < 1 ?
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The main result

Theorem 1 (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(‖ψj‖L∞ )j>0 ∈ `p(N)⇒ (‖tν‖V )ν∈F ∈ `p(F).

Interpretations :

(i) The Taylor expansion of u inherits the sparsity properties of the expansion of a(y)
into the ψj .

(ii) We approximate u in L∞(U,V ) with algebraic rate N−s despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large.

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

Key idea in the proof : holomorphic extension z 7→ u(z) with z = (zj ) ∈ CN. Diffusion
PDE with complex coefficients a(x , z) = a(x) +

∑
j≥1 zjψj : Lax-Milgram theorem

applies with <(a(x , z)) ≥ δ > 0

Domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that∑
j>0

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

for some δ > 0, then u is holomorphic, with bound ‖u(z)‖V ≤ Cδ, in the polydisc

Uρ := ⊗{|zj | ≤ ρj },

.
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Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫
|z ′|=b

u(z ′)

z − z ′
dz ′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj , for a
δ-admissible sequence ρ gives

‖∂νu|z=0‖V ≤ Cδν!
∏
j>0

ρ
−νj
j .

and therefore
‖tν‖V ≤ Cδ

∏
j>0

ρ
−νj
j = Cδρ

−ν.

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf
{
ρ−ν ; ρ s.t.

∑
j>0

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D
}
.

We do not know the general solution to this problem, except when the ψj have
disjoint supports. Instead design a particular choice ρ = ρ(ν) satisfying the constraint
with δ = r/2, for which we prove that

(‖ψj‖L∞ )j≥0 ∈ `p(N)⇒ (ρ(ν)−ν)ν∈F ∈ `p(F).



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫
|z ′|=b

u(z ′)

z − z ′
dz ′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj , for a
δ-admissible sequence ρ gives

‖∂νu|z=0‖V ≤ Cδν!
∏
j>0

ρ
−νj
j .

and therefore
‖tν‖V ≤ Cδ

∏
j>0

ρ
−νj
j = Cδρ

−ν.

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf
{
ρ−ν ; ρ s.t.

∑
j>0

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D
}
.

We do not know the general solution to this problem, except when the ψj have
disjoint supports. Instead design a particular choice ρ = ρ(ν) satisfying the constraint
with δ = r/2, for which we prove that

(‖ψj‖L∞ )j≥0 ∈ `p(N)⇒ (ρ(ν)−ν)ν∈F ∈ `p(F).



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫
|z ′|=b

u(z ′)

z − z ′
dz ′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj , for a
δ-admissible sequence ρ gives

‖∂νu|z=0‖V ≤ Cδν!
∏
j>0

ρ
−νj
j .

and therefore
‖tν‖V ≤ Cδ

∏
j>0

ρ
−νj
j = Cδρ

−ν.

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf
{
ρ−ν ; ρ s.t.

∑
j>0

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D
}
.

We do not know the general solution to this problem, except when the ψj have
disjoint supports. Instead design a particular choice ρ = ρ(ν) satisfying the constraint
with δ = r/2, for which we prove that

(‖ψj‖L∞ )j≥0 ∈ `p(N)⇒ (ρ(ν)−ν)ν∈F ∈ `p(F).



Other models

Parametric PDE’s D(u, y) = 0 of the general form

P(u, a) = 0,

with a = a(y) = a +
∑

j≥1 yjψj , where

P : V × L→W ,

with V , L,W a triplet of complex Banach spaces, and a and ψj are functions in L.

The operator P could be nonlinear in u and in a.

Example : same problem with non-linearity, e.g.

u3 − div(exp(a)∇u) = f on D = D(y) u|∂D = 0,

well posed in V = H1
0 (D) in dimension m = 3 (V ⊂ L4).

In contrast to the linear-affine model, bounded holomorphic extension is generally not
feasible in a complex domain containing the polydisc U = ⊗{|zj | ≤ 1}. For this
reason,Taylor series are not expected to converge. Instead we consider the tensorized
Legendre expansion

u(y) =
∑
ν∈F

uνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are L∞ normalized Legendre polynomials.
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Polynomial approximation results

Many of these models can be treated by the following result.

Theorem 2 (Chkifa-Cohen-Schwab, 2013) : assume that

(i) The problem is well posed for all a = a(y) with y ∈ U with solution
u(y) = u(a(y)) ∈ V .

(ii) The map P is differentiable (holomorphic) from L× V to W .

(iii) For any y ∈ U, the differential duP(u(y), a(y)) is an isomorphism from V →W

(iv) One has (‖ψj‖L)j≥1 in `p(N) for some 0 < p < 1,

Then (‖uν‖V )ν∈F ∈ `p(F)

Therefore, there exists approximations uN =
∑
ν∈ΛN

uνLν converging with rate

O(N−s ) in Lq(U,V ) with s = 1
p
− 1 for q =∞ and s = 1

p
− 1

2
for q = 2.

Key ingredients in the proof : (i) estimates of Legendre coefficients for holomorphic
functions in a “small” complex neighbourhood of U and (ii) holomorphic Banach
valued version of the implicit function theorem.
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Taylor vs Legendre expansions

In one variable :

- If u is holomorphic in an open neighbourhood of the disc {|z | ≤ b} and bounded by
M on this disc, then the n-th Taylor coefficient of u is bounded by

|tn | :=

∣∣∣∣∣u(n)(0)n!

∣∣∣∣∣ ≤ Mb−n

- If u is holomorphic in an open neighbourhood of the domain Eb limited by the ellipse
of semi axes of length (b + b−1)/2 and (b − b−1)/2, for some b > 1, and bounded by
M on this domain, then the n-th Legendre coefficent of u is bounded by

|un | := |〈u, Ln〉| ≤ Mb−nφ(n)

where φ has algebraic growth.

b

10−1

b−b

10−1

2

b+b
−1

2

−1



Numerical methods : strategies to build the sets ΛN

(i) Non-adaptive, based on the available a-priori estimates for the ‖tν‖V or ‖uν‖V .
Take ΛN to be the set corresponding to the N largest such estimates.

(ii) Adaptive, based on a-posteriori information gained in the computation
Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛN · · · .
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Downward closed index sets

For adaptive algorithms it is critical that the index chosen sets are downward closed

ν ∈ Λ and µ ≤ ν⇒ µ ∈ Λ.

Such sets are also called lower sets. This does not generally for the sets corresponding
to the N largest estimates, however the same convergence rates as in Theorem 1 and
2, can be proved when imposing such a structure.

A test case for linear-affine model in dimension d = 64 : comparison between the
approximation performance with ΛN given by standard choices {supνj ≤ k} (black) or
{
∑
νj ≤ k} (purple) and by anisotropic choices based on a-priori bounds (blue) or

adaptively generated (green).
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Highest polynomial degree for Λ1000 with different choices : 1, 2, 162 and 114.



Numerical methods : strategies to build the polynomial approximation

(i) Intrusive : exact computation of the Taylor coefficients ‖tν‖V for the linear-affine
model (Chkifa-Cohen-DeVore-Schwab) or Galerkin approximation of the Legendre
coefficients (Gittelson-Schwab). Adaptive algorithms with optimal theoretical
guarantees.

(ii) Non-intrusive : based on snapshots ui := u(y i ) for i = 1, . . . ,m. Interpolation
(Chkifa-Cohen-Schwab) or Least Squares (Chkifa-Cohen-Migliorati-Nobile-Tempone).
Adaptive algorithms seem to work well, however with no theoretical guarantees.

Additional prescriptions for non-intrusive methods :

(i) Progressive : enrichment ΛN → ΛN+1 requires only one or a few new snapshots.

(ii) Stable : moderate growth with N of the Lebesgue constant relative to the
interpolation operator.
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Sparse interpolation

Let {t0, t1, t2 . . .}, be an infinite sequence of pairwise distinct points in [−1, 1] and let
Ik be the univariate interpolation operator on Pk associated to the section {t0, . . . , tk }.

Hierarchical (Newton) form : Ik =
∑k

l=0 ∆l , with ∆l := Il − Il−1 and I−1 := 0.

Tensorization and sparsification : for ν ∈ F , we define the point

zν := (tν1 , tν2 , . . . ) ∈ U.

Then (Kuntzmann 1959), if Λ is downward closed, the set

ΓΛ := {zν : ν ∈ Λ},

is unisolvent for PΛ = Span{y 7→ yν : ν ∈ Λ} and the interpolant is

IΛ :=
∑
ν∈Λ

∆ν, ∆ν := ⊗j≥1∆νj .

Theorem (Chkifa-Cohen-Schwab, 2012) : if Lk = ‖Ik‖L∞→L∞ ≤ (1 + k)a, then
LΛ = ‖IΛ‖L∞→L∞ ≤ #(Λ)1+a. Moderate growth of Lk for Leja points (a = 1).

A straightforward adaptive algorithm : given ΛN , define ΛN+1 := ΛN ∪ {ν∗} with
ν∗ /∈ ΛN such that ΛN+1 is downward closed and maximizing ‖∆νu‖L∞ .

Remark : the same principles apply to the tensorization of other systems, such as
hierarchical piecewise linear finite elements.
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Comparison with Kriging interpolation algorithms

Test case : y = (y1, y2, y3, y4) shape parameters in the design of an airfoil and u(y) is
the lift to drag ratio (scalar quantity of interest) obtained by ONERA numerical solver.
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Error curves in terms of number of points are comparable.

The CPU cost for sparse interpolation scales linearly with the number of points.

This contrasts with Kriging methods which require solving ill-conditionned linear
systems of growing size + optimization of the parameters of a Gaussian kernel.



Conclusion

The curse of dimensionality can be “defeated” by exploiting both the smoothness and
anisotropy in the different variables.

For certain models, this can be achieved by sparse polynomial approximations.

Adaptive algorithms with optimal theoretical guarantees are still to be developed, in
particular for non-intrusive approaches (interpolation, collocation, least-squares).

The choice of parametrization and representation of the solution are critical in this
analysis since it affects the properties of the map y 7→ u(y).

Other approaches to evaluate Kolmogorov width of solution manifold ?

THANKS !
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